2003年センター試験 | · · 数学 I · 数学 A(その 1)

第1問 (必答問題) (配点 40)

[1] 2 次関数

$$y = -2x^2 + ax + b$$

のグラフを C とする。C は頂点の座標が

$$\left(\begin{array}{c|c} a & a^2 \\ \hline \hline \mathcal{P} & \end{array}\right)$$

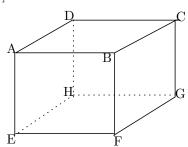
の放物線である。C が点 (3,-8) を通るとき,

$$b =$$
 ウエ $a+10$

が成り立つ。このときのグラフCを考える。

- (1) C が x 軸と接するとき , a= \mid オ \mid または a= \mid カキ \mid であ カキ $lacksymbol{\mid}$ の放物線は $a=lacksymbol{\mid}$ オ $lacksymbol{\mid}$ のときの放物線を x 軸
- (2) C の頂点の y 座標が最小になるのは,a = ケコ のときで,こ のときの最小値は │ サシ │ である。

[2]



一辺の長さが1 の立方体の8 個の頂点 A, B, C, D, E, F, G, H が 図のような位置関係にある。この8個の頂点から異なる3点を選び,そ れらを頂点とする三角形をつくる。

- (1) 三角形は全部で スセ 個できる。また,互いに合同でない三角 形は全部で 種類ある。
- (2) △ABC と合同になる確率は, であり,また,正三角形 になる確率は である。
- $\sqrt{2} + \sqrt{3}$ (3) 三角形の面積の期待値は ニヌ

第 2 問 (必答問題) (配点 40)

[1]

(1) p, q, r を実数とし, x についての整式 A, B を

$$A = x^3 + px^2 + qx + r$$
$$B = x^2 - 3x + 2$$

- (a) A を B で割ったときの商が x-1 であった。このとき , p=である。
- (b) A を B で割ったときの余りが x で割り切れた。このとき ,

である。

(c) A を B で割ったとき , その商と余りが等しくなった。このとき ,

$$q+r=$$
 7

である。

(2) a, b を実数として,次のカーケーに,下の ⑥~⑥のうちから当て はまるものを一つずつ選べ。

$$(|a+b|+|a-b|)^2 = 2(a^2+b^2+$$
 カ

であるから , $(|a+b|+|a-b|)^2=4a^2$ が成り立つための必要十分条 件は | キ | である。 | キ | でないときは

$$(|a+b|+|a-b|)^2 = 7$$

となる。 また, $\dfrac{1}{2}(|a+b|+|a-b|)=b$ が成り立つための必要十分条件は である。

- (i) a^2 (1) b^2
- (2) $4a^2$
- (3) $4b^2$

- (5) |ab|
- (6) 2ab
- (7) 2|ab|(A) $|a^2 - b^2|$ (B) $a^2 \le b^2$
- (8) $a^2 b^2$
- (9) $b^2 a^2$

- \bigcirc $|a| \ge b$
- [2] $\triangle ABC$ において, $AB=5,\ BC=2\sqrt{3},\ CA=4+\sqrt{3}$ とする。この

$$\cos A = \begin{array}{c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}$$

である。△ABC の面積は

B を通り, CA に平行な直線と △ABC の外接円の交点のうち, B と異 なる方を D とするとき , BD = タ であり,台形 ADBC の面積は │ ツテ │ である。

第3問 (選択問題) (配点 20)

18, (1) 等比数列 $-6\sqrt{3}$ 6, … の第 6 項は であり, I

初項から第15項までの奇数番目の項の和は オカキク である。 ケコサ

(2) 数列

 $1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, \cdots$

の第n 項を a_n とする。この数列を

 $1 | 2, 2 | 3, 3, 3 | 4, 4, 4, 4 | 5, 5, 5, 5, 5 | 6, \cdots$

のように1個,2個,3個,4個,…と区画に分ける。 第1区画から第20区画までの区画に含まれる項の個数 は |シスセ| であり , $a_{215} = |$ ソタ | となる。また , 第 1区画から第20区画までの区画に含まれる項の総和は |チツテト| であり ,

$$a_1 + a_2 + a_3 + \dots + a_n \ge 3000$$

となる最小の自然数 n は n ナニヌ である。

第1問(必答問題)(配点30)

[1]

(1) 一般に A, B を定数とするとき , $x \ge 0$ を満たすすべて の x に対して , x の不等式 Ax + B > 0 が成り立つ条件は

$$A \ge$$
 ア かつ $B >$ イ

である。

 $(2) x \ge 0$ を満たすすべての x に対して,不等式

$$(x+1)\sin^2\alpha + (2x-1)\sin\alpha\cos\alpha - x\cos^2\alpha > 0\cdots$$

が成り立つような a の値の範囲を求めよう。 ただし , $0^{\circ} \le \alpha \le 180^{\circ}$ とする。

 $x \ge 0$ を満たすすべての x に対して , ① が成り立つ条件は

$$\sin$$
 $\sigma \ge \cos$ エ α

かつ

$$\sin \frac{\Box}{\alpha} > \sin \alpha \cos \alpha$$

が成り立つことである。これより , 求める α の値の範囲は

である。

[2] 正の数 x に対して

$$a = \log_3 x - \frac{7}{2}$$
, $b = \log_3 x - \frac{5}{2}$, $c = \log_9 x - \frac{5}{2}$
 $d = \log_9 x - \frac{3}{2}$

とおく。

- (2) abcd > 0 となるような x の値の範囲を求めよう。 a, b, c, d のすべてが負の場合には

$$0 < x < \boxed{2} \sqrt{\boxed{y}}$$

となる。 $a,\ b,\ c,\ d$ のうち二つが正で残り二つが負の場合には

$$oxed{9}$$
 $< x < oxed{9}$ $oxed{7}$ $oxed{1}$

となる。さらに, a, b, c, d のすべては正の場合には

となる。

(3) $\boxed{m{gf}} < x < \boxed{\mbox{ "ソテ}} \sqrt{\mbox{ }} \mbox{ }$ の範囲において $a,\ b,\ c,\ d$ の間には大小関係

が成り立つ。

第2問 (必答問題) (配点 30)

関数 f(x) は

$$x \le 3$$
 のとき $f(x) = x$ $x > 3$ のとき $f(x) = -3x + 12$

で与えられている。このとき , $x \ge 0$ に対して , 関数 g(x) を

$$g(x) = \int_0^x f(t) \, dt$$

と定める。

(1) $0 \le x \le 3$ のとき

$$g(x) = \frac{7}{1}x$$

であり, $x \ge 3$ のとき

$$g(x) = -\frac{3}{2}x^2 + \boxed{\text{I}} x - \boxed{\text{D}} \ddagger$$

である。

(2) 曲線 y=g(x) を C とする。C 上の点 $\mathrm{P}(a,\,g(a))$ (ただし, 0< a<3)における C の接線 l の傾きは $\boxed{}$ であるから,l の方程式は

$$y = \boxed{2} x - \frac{5}{\boxed{3}} a^2$$

である。

(3) l と x 軸の交点を Q とすると Q の座標は

$$\left(\begin{array}{c|c}
 & \mathbf{y} \\
\hline
 & \mathbf{\hat{\nu}}
\end{array}\right) a, \quad 0$$

であり , l と C の P 以外の交点を R とすると R の座標は

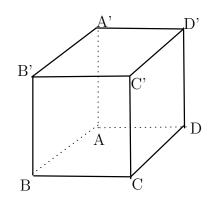
である。

(4) R から x 軸に垂線を引き , x 軸と交わる点を H とする とき , 三角形 QRH の面積 S は

$$S = \frac{\boxed{\mathbf{F}}}{\boxed{\mathbf{y}}} a^3 - \boxed{\mathbf{F}} a^2 + \boxed{\mathbf{F}} a$$

第3問 (選択問題) (配点 20)

一辺の長さが 1 の , 図のような立方体 ABCD-A'B'C'D' において , AB , CC' , D'A' を a:(1-a) に内分する点をそれぞれ P,Q,R とし , $\overrightarrow{AB}=\overrightarrow{x}$, $\overrightarrow{AD}=\overrightarrow{y}$, $\overrightarrow{AA'}=\overrightarrow{z}$ とおく。ただし , 0<a<1 とする。



 $(1)\overrightarrow{\mathrm{PQ}}, \quad \overrightarrow{\mathrm{PR}}$ を $\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z}$ を用いて表すと

$$\overrightarrow{PQ} = (\boxed{\mathcal{T}} - \boxed{\mathbf{1}})\overrightarrow{x} + \overrightarrow{y} + \boxed{\mathbf{D}}\overrightarrow{z}$$
 $\overrightarrow{PR} = \boxed{\mathbf{I}}\overrightarrow{\mathbf{J}}\overrightarrow{x} + (1-a)\overrightarrow{y} + \overrightarrow{z}$

となるしたがって

$$|\overrightarrow{PQ}|: |\overrightarrow{PR}| = 1:$$
 カ $|\overrightarrow{PQ}|^2 =$ ‡ $(a^2 - a +$ ク $)$ $\overrightarrow{PQ} \cdot \overrightarrow{PR} = a^2 - a +$ $\boxed{}$ ケ

(2) 三角形 PQR の重心を G とすると

$$\overrightarrow{\mathrm{DG}} = \frac{\overrightarrow{\flat} + \overleftarrow{\lambda}}{\overleftarrow{\upsilon}} (\overrightarrow{x} - \overrightarrow{y} + \overrightarrow{z})$$

$$\overrightarrow{\mathrm{SD}} = \left(egin{array}{cccc} oldsymbol{\mathcal{G}} & oldsymbol{\mathcal{G}} & oldsymbol{\mathcal{F}} & oldsymbol{\mathcal{F}} & oldsymbol{\mathcal{F}} & oldsymbol{\mathcal{F}} & oldsymbol{\mathcal{G}} & oldsymbol{\mathcal{G} & oldsymbol{\mathcal{G}} & oldsymbol{\mathcal{G}} & oldsymbol{\mathcal{G}} & oldsymbol{\mathcal{G}}$$

である。

第4問 (選択問題) (配点 20)

複素数平面上で

$$z_0 = (\sqrt{3} + i)(\cos \theta + i \sin \theta)$$

$$z_1 = \frac{4\{(1 - \sin \theta) + i \cos \theta\}}{(1 - \sin \theta) - i \cos \theta}$$

$$z_2 = -\frac{2}{z_1}$$

の表す点をそれぞれ P_0 , P_1 , P_2 とする。ただし , $0^\circ < \theta < 90^\circ$ とする。また , $\arg z$ は複素数 z の偏角を表すものとし , 偏角は -180° 以上 180° 未満とする。

$$(1) |z_0| =$$
 ア $, \quad \arg z_0 =$ 【 イウ $]^\circ + heta$ である。

 $(2) z_1$ 分母と分子に $(1-\sin\theta)+i\cos\theta$ をかけて計算すると

$$z_1 = \boxed{\mathbf{I}} \left(-\sin\theta + i\,\cos\theta \right)$$

となる。よって, $|z_1|=$ オ , $\arg z_1=$ カキ $^\circ+ heta$ である。

(4) 原点 O, P_0, P_1, P_2 の 4 点が同一円周上にある場合を考える。このとき $\angle OP_2P_1$ を考えると

$$\operatorname{arg} \frac{z_1 - z_2}{-z_2} = \boxed{2}$$

であるから,

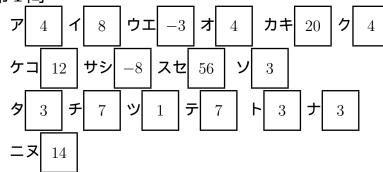
が成り立つ。よって

$$\sin\theta = \frac{\sqrt{\boxed{\mathfrak{F}}}}{\boxed{}}$$

となる。

条件より, r-2p-6=0

(数学 I·A)



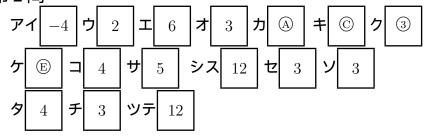
[1]
$$y = -2\left(x - \frac{a}{4}\right)^2 + \frac{a^2}{8} + b$$
 $\therefore \left(\frac{a}{4}, \frac{a^2}{8} + b\right)$ $(3, -8)$ を通るとき $, -8 = -18 + 3a + b$ $\therefore b = -3a + 10$ $(1) \frac{a^2}{8} + b = 0$ より $, \frac{a^2}{8} - 3a + 10 = 0$ $\therefore (a - 4)(a - 20) = 0$ $\therefore a = 4, 20$ $y = -2(x - 1)^2$ と $y = -2(x - 5)^2$ より $, x$ 軸方向へ 4

$$(2) y = \frac{a^2}{8} - 3a + 10 = \frac{1}{8} (a - 12)^2 - 8$$
より $a = 12$ のとき , 最小値 -8

[2]

- (1) 三角形の総数は $_8C_3={f 56}$ 互いに合同でないものは ${f 3}$ 種 類 ある。(直角二等辺三角形 $,1:\sqrt{2}:\sqrt{3},$ 正三角形)
- (2) 直角二等辺三角形は一つの平面上に 4 個ずつできるか で 4 imes6=24 個できる。よってその確率は $rac{3}{7}$ また , 正三角形は一つの対角線について , 2通りずつ考えられるが重複しているので $2\times2\times6\div3=8$ よってその確率は , $\frac{8}{56}=\frac{1}{7}$
- $(3)\,1:\sqrt{2}:\sqrt{3}$ の三角形のできる確率は $\dfrac{3}{7}$ で面積は $\frac{1}{2} \cdot \frac{3}{7} + \frac{3}{7} \cdot \frac{\sqrt{2}}{2} + \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{3 + 3\sqrt{2} + \sqrt{3}}{14}$

第2問



[1] (1) (a) $(x^2 - 3x + 2)(x - 1) + lx + m$ の形になるから、 p = -4

(b)
$$\begin{array}{rrrr}
x + (p+3) \\
x^2 - 3x + 2) \overline{\smash)x^3 + px^2} & +qx & +r \\
\underline{x^3 - 3x^2} & +2x \\
\hline
(p+3)x^2 & +(q-2)x & +r \\
(p+3)x^2 & -3(p+3)x & +2(p+3)
\end{array}$$

(c) x + (p+3) = (3p+q+7)x + r - 2p - 6 LU, 1 = 3p + q + 7, p + 3 = r - 2p - 6 辺々加えて, q + r = 3 $(2) (|a+b| + |a-b|)^2 = (a+b)^2 + (a-b)^2 + 2|a+b||a-b|$ $=2(a^2+b^2+|a^2-b^2|)$ $2(a^2 + b^2 + |a^2 - b^2|) = 4a^2 \iff a^2 - b^2 = |a^2 - b^2|$ $egin{array}{l} \therefore a^2 \geqq b^2$ それ以外は,右辺が $4b^2$ $\frac{1}{2}(|a+b|+|a-b|)=b \ \text{LI}$, $b\stackrel{\mathcal{L}}{\geq} 0$ また , $b^2 \geqq a^2$ $\therefore \boldsymbol{b} \geqq |\boldsymbol{a}|$

r = 2p + 6

[2] 余弦定理から ,
$$\cos A = \frac{25 + (4 + \sqrt{3})^2 - 12}{2 \cdot 5(4 + \sqrt{3})} = \frac{4}{5}$$
 $\sin A = \frac{3}{5}$

 $\angle ABD = \angle BAC$ ADBC は等脚台形で, $AD = BC = 2\sqrt{3}$ BD=x とおく。 余弦定理から

$$12 = 25 + x^{2} - 2 \cdot 5 \cdot \frac{4}{5}$$

$$x^{2} - 8x + 13 = 0 \quad \therefore x = 4 \pm \sqrt{3} \quad \therefore \mathbf{BD} = 4 - \sqrt{3}$$
台形 ADBC =
$$\frac{(4 + \sqrt{3} + 4 - \sqrt{3})}{2} \times 5 \times \sin A = \mathbf{12}$$

第3問

アイ
$$\begin{bmatrix} -2 \\ 0 \end{bmatrix}$$
 3 $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ オカキク $\begin{bmatrix} 6560 \\ 560 \end{bmatrix}$ ケコサ $\begin{bmatrix} 243 \\ 521 \end{bmatrix}$ シスセ $\begin{bmatrix} 210 \\ 21 \end{bmatrix}$ チツテト $\begin{bmatrix} 2870 \\ 12870 \end{bmatrix}$ ナニヌ $\begin{bmatrix} 217 \\ 217 \end{bmatrix}$

(1) 公比 $-\frac{1}{\sqrt{3}}$ 初項 18 であるから

$$a_6 = 18 \times \left(-\frac{\sqrt{3}}{3}\right)^5 = \frac{-2\sqrt{3}}{3}$$

初項 18 公比 $\frac{1}{3}$ 項数 8 の等比数列の和であるから、

$$\frac{18\left\{1 - \left(\frac{1}{3}\right)^{8}\right\}}{1 - \frac{1}{3}} = 3^{3} \left\{1 - \left(\frac{1}{3}\right)^{8}\right\} = \frac{6560}{243}$$

$$(2) 1 + 2 + 3 + \dots + 20 = \frac{20(20+1)}{2} = \mathbf{210}, \quad a_{215} = \mathbf{21}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + 20^{2} = \frac{20(20+1)(2 \cdot 20+1)}{6}$$

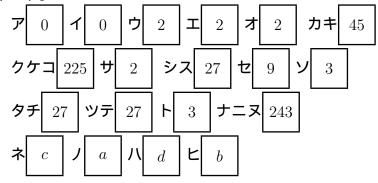
$$= \mathbf{2870}$$

第 20 区画までの和が 2870 で , 第 21 区画 00 k 番目まで 加えて, $2870+21k \ge 3000$ より, $k \ge \frac{130}{21} = 6.1 \cdots$ より, $k \ge 7$

ゆえに 最初から数えて , 最小の自然数 n は 210+7=217

(数学 II・B)

第1問



[1]

- (1) Ax + B > 0 $(x \ge 0)$ が常に成り立つことより, $A \ge 0, \ B > 0$
- (2)① を変形して

 $(\sin^2 \alpha - \cos^2 \alpha + 2\sin \alpha \cos \alpha)x + (\sin^2 \alpha - \sin \alpha \cos \alpha) > 0$ $\therefore (\sin 2\alpha - \cos 2\alpha)x + (\sin^2 \alpha - \sin \alpha \cos \alpha) > 0$

(1) より, $\sin 2\alpha \ge \cos 2\alpha$, $\sin^2 \alpha > \sin \alpha \cos \alpha$ 前式から, $\sqrt{2}\sin(2\alpha-45^\circ)\geq 0$

$$-45^{\circ} \le 2\alpha - 45^{\circ} \le 315^{\circ}$$
 より

$$0^{\circ} \leq 2\alpha - 45^{\circ} \leq 180^{\circ} \quad \therefore \frac{45^{\circ}}{2} \leq \alpha \leq \frac{225^{\circ}}{2} \cdots \textcircled{1}$$

後式から , $\sin \alpha (\sin \alpha - \cos \alpha) > 0$

 $\sin \alpha > 0$ より, $\sin \alpha > \cos \alpha$ $\therefore 45^\circ < \alpha < 180^\circ \cdots$ ② ①,② から, $45^\circ < \alpha \le \frac{225^\square}{2}$

①,② から ,
$$\mathbf{45}^{\circ} < lpha \leqq \frac{\mathbf{225}^{\circ}}{\mathbf{2}}$$

[2]

$$(1)\log_9 x = \frac{3}{2} \text{ LU , } x = 9^{\frac{3}{2}} = \textbf{27}$$

$$c = \frac{\log_3 x}{\log_3 9} - \frac{5}{2} = \frac{1}{2} (\log_3 x - 5)$$

$$d = \frac{1}{2} (\log_3 x - 3)$$

条件から , $b < 0 \Longleftrightarrow \log_3 x - \frac{5}{2} < 0$ である。

 $0 < x < 3^{\frac{5}{2}}$: $0 < x < 9\sqrt{3}$

条件から a < 0 かつ , d > 0 であればよい。

$$\therefore x < 3^{\frac{7}{2}}$$
 かつ, $x > 3^3$ $\therefore 27 < x < 27\sqrt{3}$ $c > 0$ より, $\log_3 x > 5$ $\therefore 243 < x$

(2) 以上より,c < a < d < b

第2問

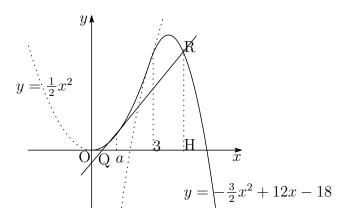
$$\mathcal{F}$$
 1
 \mathcal{A}
 \mathcal{F}
 1
 \mathcal{F}
 2
 \mathcal{F}
 3
 \mathcal{F}
 1
 1
 1
 \mathcal{F}
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

$$(1) g(x) = \int_0^x t \, dt = \left[\frac{t^2}{2} \right]_0^x = \frac{1}{2} x^2 \quad (0 \le x \le 3)$$

$$g(x) = \int_0^3 t \, dt + \int_3^x (-3t + 12) \, dt$$

$$= \frac{9}{2} + \left[-\frac{3}{2} t^2 + 12t \right]_3^x$$

$$= -\frac{3}{2} x^2 + 12x - 18 \quad (x \ge 3)$$



$$(2)~0 \leq x \leq 3~$$
のとき , $g'(a)=a~~l~$ の傾きは $a~~l:y-rac{1}{2}a^2=a(x-a)~~\therefore y=ax-rac{1}{2}a^2$

$$\begin{array}{ll} (3)\,(2) \text{ において } y=0 \text{ とおくと , } a\left(x-\frac{1}{2}a\right)=0 \\ \therefore x=\frac{1}{2}a \quad (\because a\neq 0) \quad \mathbf{Q}\left(\frac{1}{2}a,\,\mathbf{0}\right) \\ ax-\frac{1}{2}a^2=-\frac{3}{2}x^2+12x-18, \quad \therefore \{x-(6-a)\}\{3x-(6+a)\}=0 \end{array}$$

交点の
$$x$$
 座標は 3 より大 $\therefore x = 6 - a \quad (\because 0 < a < 3)$ R $\left(6 - a, 6a - \frac{3}{2}a^2\right)$

$$(4) S = \frac{1}{2} \times QH \times HR = \frac{1}{2} \left(6 - \frac{3}{2} a \right) \left(6a - \frac{3}{2} a^2 \right)$$

$$= \frac{9}{8} a^3 - 9a^2 + 18a$$

$$S' = \frac{27}{8} a^2 - 18a + 18 = \frac{9}{8} (3a^2 - 16a + 16)$$

$$= \frac{9}{8} (a - 4)(3a - 4) \quad S' = 0 \text{ J}, \ a = \frac{4}{3}$$

$$\boxed{a \mid 0 \mid \cdots \mid \frac{4}{3} \mid \cdots \mid 3}$$

S'	X	+	0	_	\times	
S	X	/	最大	\	\supset	
4						

よって, $a=\frac{4}{3}$ のとき最大値をとる。

第3問

$$\overrightarrow{PR} = -a \overrightarrow{x} + (1 - a) \overrightarrow{y} + \overrightarrow{z}$$

$$\overrightarrow{x} \cdot \overrightarrow{x} = \overrightarrow{y} \cdot \overrightarrow{y} = \overrightarrow{z} \cdot \overrightarrow{z} = 1$$

$$\overrightarrow{x} \cdot \overrightarrow{y} = \overrightarrow{y} \cdot \overrightarrow{z} = \overrightarrow{z} \cdot \overrightarrow{x} = 0 \text{ Tbbb}$$

$$|\overrightarrow{PQ}|^2 = (1 - a)^2 + 1^2 + a^2 = 2(a^2 - a + 1)$$

$$|\overrightarrow{PQ}|^2 = (-a)^2 + (1 - a)^2 + 1^2 = 2(a^2 - a + 1)$$

$$|\overrightarrow{PQ}| : |\overrightarrow{PR}| = 1 : 1$$

$$|\overrightarrow{PQ}|^2 = (1 - a)^2 + 1^2 + a^2 = 2(a^2 - a + 1)$$

$$|\overrightarrow{PQ}| \cdot |\overrightarrow{PR}| = a^2 - a + 1$$

$$|\overrightarrow{PQ} \cdot \overrightarrow{PR}| = a^2 - a + 1$$

$$|\overrightarrow{PQ} \cdot \overrightarrow{PR}| = a^2 - a + 1$$

$$|\overrightarrow{PQ} \cdot \overrightarrow{PR}| = \frac{1}{2} \quad \therefore \theta = 60^\circ$$

$$(2) \overrightarrow{DG} = \overrightarrow{AG} - \overrightarrow{AD} = \frac{1}{3} \{ a \overrightarrow{x} + \overrightarrow{x} + \overrightarrow{y} + a \overrightarrow{z} + (1-a) \overrightarrow{y} + \overrightarrow{z} \} - \overrightarrow{y} = \frac{a+1}{3} (\overrightarrow{x} + \overrightarrow{y} + \overrightarrow{z}) \quad (続 \zeta)$$

(数学 II・B)(続き)

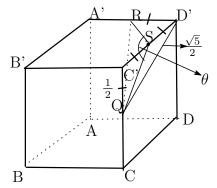
$$\triangle \text{QCS} \equiv \triangle \text{SDR}$$
 であるから $\overrightarrow{\text{C'S}} = a\overrightarrow{\text{C'D'}}$
 $\overrightarrow{\text{SD}} = \overrightarrow{\text{SD'}} + \overrightarrow{\text{DD'}} = (a-1)\overrightarrow{x} - \overrightarrow{z}$

$$(3) \overrightarrow{SG} = \overrightarrow{SD} + \overrightarrow{DG}$$

$$\overrightarrow{SG} \perp \overrightarrow{DG} \iff \overrightarrow{SG} \cdot \overrightarrow{DG} = \overrightarrow{SD} \cdot \overrightarrow{DG} + |\overrightarrow{DG}|^2 = 0$$

$$\frac{(a+1)(a-1)}{3} - \frac{a+1}{3} + \frac{(a+1)^2}{3} = 0$$

$$\frac{(a+1)(2a-1)}{3} = 0 \quad \therefore a = \frac{1}{2}$$



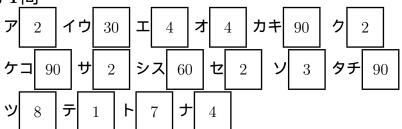
$$a = \frac{1}{2}$$
 のとき , $SQ = SR = \frac{1}{\sqrt{2}}$ $QR = \sqrt{QD^2 + DQ^2} = \sqrt{\frac{5}{4} + \frac{1}{4}} = \sqrt{\frac{3}{2}}$

余弦定理から

$$\cos \angle QSR = \frac{\frac{1}{2} + \frac{1}{2} - \frac{3}{2}}{2 \cdot (\frac{1}{\sqrt{2}})^2} = -\frac{1}{2}$$

$$\therefore \theta = 120^{\circ}$$

第4問



(1)

$$z_0 = 2 (\cos 30^\circ + i \sin 30^\circ) (\cos \theta + i \sin \theta)$$
$$= 2\{\cos (30^\circ + \theta)\} + i \sin (30^\circ + \theta)\}$$
$$\therefore |z_0| = 2, \quad \arg z_0 = 30^\circ + \theta$$

(2) 分母 =
$$(1 - \sin \theta)^2 + \cos^2 \theta = 2(1 - \sin \theta)$$

分子 = $4\{(1 - \sin \theta) + i \cos \theta\}\{(1 - \sin \theta) + i \cos \theta\}$
= $4\{(1 - \sin \theta)^2 - \cos^2 \theta + 2i(1 - \sin \theta)\cos \theta\}$
= $4\{(1 - \sin \theta)^2 - (1 - \sin^2 \theta) + 2i(1 - \sin \theta)\cos \theta\}$
= $4(1 - \sin \theta)\{1 - \sin \theta - (1 + \sin \theta) + 2i \cos \theta\}$
= $8(1 - \sin \theta)(-\sin \theta + i \cos \theta)$

$$\therefore z_1 = 4(-\sin\theta + i\cos\theta)$$

$$= 4\{\cos(90^\circ + \theta) + i\sin(90^\circ + \theta)\}$$

$$\therefore |z_1| = 4, \quad \arg z_1 = 90^\circ + \theta$$

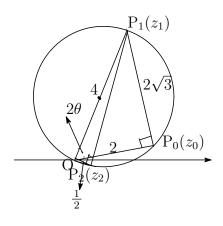
$$(3) \left| \frac{z_1}{z_0} \right| = \frac{|z_1|}{|z_0|} = 2$$

$$\arg \frac{z_1}{z_0} = \arg z_1 - \arg z_0 = 60^{\circ}$$

$$P_1(z_1)$$

上図のようになるので , $\mathrm{P_0P_1} = 2\sqrt{3}$

$$z_2 = -\frac{2}{z_1} = 2 \cdot (-z_1)^{-1} = \frac{1}{2} (\sin \theta + i \cos \theta)$$
$$= \frac{1}{2} \{\cos (90^\circ - \theta) + i \sin (90^\circ - \theta)\}$$



題意の円は , OP_1 を直径とする円であるから , $\angle\mathrm{OP}_2\mathrm{P}_1=90^\circ$ である。よって , 図は上のようになる。

$$\therefore \arg \frac{z_1 - z_2}{-z_2} = -90^{\circ}$$

$$\arg \frac{z_1}{z_2} = \arg z_1 - \arg z_2 = (90^\circ + \theta) - (90^\circ - \theta) = 2\theta$$

$$\angle P_1OP_2 = 2\theta$$
 であるから

$$\cos 2\theta = \frac{\frac{1}{2}}{4} = \frac{1}{8}$$

$$\therefore 8\cos 2\theta - 1 = 0$$

$$8(1 - 2\sin^2\theta) - 1 = 0 \qquad \therefore \sin^2\theta = \frac{7}{16}$$

$$\sin\theta = \frac{\sqrt{7}}{4} \quad (\because \sin\theta > 0)$$