入試問題研究 -2015 年 数学補題 (記述:論述)

(倉敷南高等学校 2015.3.6~)

- 直線 $\ell: y = kx + m \ (k > 0)$ が円 $C_1: x^2 + (y 1)^2 = 1$ と放物線 $C_2: y = -\frac{1}{2}x^2$ に接している。このとき、以下の問いに答えよ。 (2015 大阪大)
 - (1) k と m の値を求めよ.
 - (2) 直線 ℓ と放物線 C_2 および, y 軸とで囲まれた図形の面積を求めよ.
- **2** 2 次関数 y=f(x) のグラフは上に凸であり、原点および点 $(a,\ 0)$ を通るものとする.ただし、0 < a < 1 とする.関数 $y=x^2$ のグラフを C 、関数 y=f(x) のグラフを D とし,C と D の共有点のうち,原点と異なるものを P とする.点 P における C の接線の傾きを m ,D の接線の傾きを n とするとき

$$(2a-1)m = 2an$$

が成り立つとする. このとき, 次の問いに答えよ.

(2015 岡山大)

- (1) f(x) を x と a の式で表せ.
- (2) $0 \le x \le a$ の範囲で、曲線 D と x 軸で囲まれた図形の面積を S(a) とする. S(a) を a の式で表せ.
- (3) (2) で求めた S(a) の 0 < a < 1 における最大値を求めよ.
- $oxed{3}$ a, b は定数で,ab > 0 とする.放物線 $C_1: y = ax^2 + b$ 上の点 $P(t, at^2 + b)$ における接線を ℓ とし,放物線 $C_2: y = ax^2$ と ℓ で囲まれた図形の面積を S とする. (2015 金沢大)
 - (1) ℓの方程式を求めよ.
 - (2) ℓ と C_2 のすべての交点の x 座標を求めよ.
 - (3) $\triangle P$ が C_1 上を動くとき、S は $\triangle P$ の位置によらず一定であることを示せ.
- **4** 直線 y = px + q が, $y = x^2 x$ のグラフとは共有点をもつが, y = |x| + |x 1| + 1 のグラフとは共有点をもたないような点 (p, q) の存在範囲を図示し、その面積を求めよ. (改題 2015 京都大)

入試問題 解答例 1

2015 大阪大学(文系)

--解答例--

1

(1) 直線 ℓ は円 C_1 と接することから

$$\frac{|m-1|}{\sqrt{m^2+1}} = 1 \Longleftrightarrow (m-1)^2 = k^2 + 1 \cdots \oplus 1$$

$$-\frac{1}{2}x^2 = kx + m \quad \text{とおいて}$$

$$\ell \text{ は } C_2 \text{ と接することから}$$

$$x^2 + 2kx + 2m = 0 \quad \text{より}$$
判別式 $\frac{D}{4} = k^2 - m = 0 \quad \therefore k^2 = m \cdots \oplus 2$

① ,② より
$$(m-1)^2 = 2m+1 \Longrightarrow m(m-4) = 0$$
 から $m=0, 4$

② より、m = 0 のときは、k = 0 となり、不適.

したがって, m = 4 のときは, $k^2 = 8$ となり, k > 0 から, $k = 2\sqrt{2}$.

$$k = 2\sqrt{2}, \quad m = 4$$
 (答)

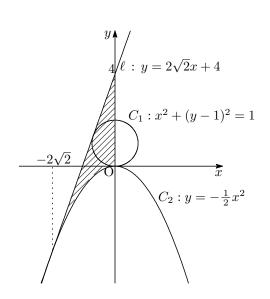
(2) 求める面積をSとする.図の斜線部分であるから

$$S = \int_{-2\sqrt{2}}^{0} \left\{ 2\sqrt{2}x + 4 - \left(-\frac{1}{2}x^{2} \right) \right\} dx$$

$$= \frac{1}{2} \int_{-2\sqrt{2}}^{0} (x + 2\sqrt{2})^{2} dx$$

$$= \frac{1}{2} \left[\frac{(x + 2\sqrt{2})^{3}}{3} \right]_{-2\sqrt{2}}^{0}$$

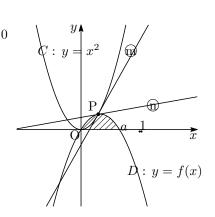
$$= \frac{8\sqrt{2}}{3} \quad (\stackrel{\triangle}{\cong})$$



–解答例—

2

f(x) = kx(x-a) $g(x) = x^2$ とおくと $f'(x) = k(2x - a), \ g'(x) = 2x$ $kx(x-a)=x^2$ とおくと, $x\{k(x-a)-x\}=0$ (k-1)x = ka で、k < 0 から、 $x = \frac{ka}{k-1}$ $m = g'\left(\frac{ka}{k-1}\right) = \frac{2ka}{k-1}$ $n = f'\left(\frac{ka}{k-1}\right) = \frac{k(k+1)a}{k-1}$ (2a-1)m = 2an * 5 $(2a-1) \cdot \frac{2ka}{k-1} = 2a \cdot \frac{k(k+1)a}{k-1}$ (2a-1) = a(k+1) であるから, $k = \frac{a-1}{a} (\because 0 < a < 1)$ よって, $f(x) = \frac{a-1}{a} x(x-a)$ (答)



(2) 図より,

$$S(a) = \int_0^a \frac{a-1}{a} x(x-a) dx$$
$$= \frac{1-a}{6a} (a-0)^3 = \frac{(1-a)a^2}{6}$$
$$S(a) = \frac{(1-a)a^2}{6}$$
 (答)

$$(3)$$
 $S'(a)=\frac{2a-3a^2}{6}=-\frac{a(3a-2)}{6}$ $S'(a)=$ とおいて, $a=0$, $\frac{2}{3}$ であり,増減表を書いて,

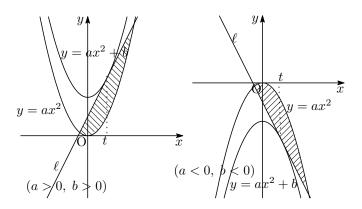
a	0		$\frac{2}{3}$		1
S'(a)		+	0	_	
S(a)		7	最大	7	

$$a=rac{2}{3}$$
 のとき, $S(a)$ は最大となり,最大値 $S\left(rac{2}{3}
ight)=rac{1}{6}\left(rac{2}{3}
ight)^2\left(1-rac{2}{3}
ight)=rac{2}{81}$ 最大値 $rac{2}{81}$ $\left(a=rac{2}{3}$ のとき)(答)

入試問題 解答例 $\lceil 3 \rceil$

2015 金沢大学(文系)

-解答例--



(1) ab>0 から、上図の 2 つの場合が考えられるが、実は x 軸に関して対称であることから、 $a>0,\ b>0$ として,一般性を失わない.

放物線
$$C_2: y=ax^2+b$$
 より, $\left[y'\right]_{x=t}=2at$ であるから,

接線ℓの方程式は

$$y - (at^2 + b) = 2at(x - t) \Longrightarrow y = 2atx - at^2 + b$$
 (答)

(2)
$$ax^2 = 2atx - at^2 + b$$
 とおいて, $a > 0$, $b > 0$ の下で

$$a(x-t)^2 = b \Longrightarrow x - t = \pm \sqrt{\frac{b}{a}} \quad \therefore x = t \pm \sqrt{\frac{b}{a}}$$

交点の
$$x$$
 座標は, $t\pm\sqrt{rac{b}{a}}$ (答)

$$(3) \ \alpha = t - \sqrt{\frac{b}{a}}, \ \beta = t + \sqrt{\frac{b}{a}} \ とおくとき$$

$$S = \int_{\alpha}^{\beta} \left\{ (2atx - a^2 + b) - ax^2 \right\} dx$$

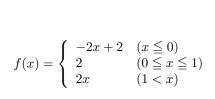
$$= -a \int_{\alpha}^{\beta} (x - \alpha)(x - \beta) dx = \frac{a}{6} (\beta - \alpha)^3$$

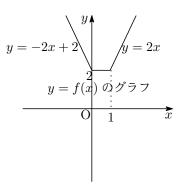
$$= \frac{a}{6} \left(2\sqrt{\frac{b}{a}} \right)^3 = \frac{4}{3} b \sqrt{\frac{b}{a}} \Longrightarrow (t \text{ に無関係で一定})$$
よって、題意は成立(終)

入試問題 解答例 4

2015 京都大学(文系)

--解答例--





より, y = f(x) のグラフの概形は右図.

$$x^2-x=px+q$$
 とおくとき,
$$x^2-(p+1)x-q=0$$
 共有点をもつ条件から
$$D=(p+1)^2+4q\geqq0\Longrightarrow q\geqq-\frac{1}{4}(p+1)^2\cdots$$
 ③

$$g(x) = px + q$$
 が $f(x)$ と交わらないためには

$$-2 \leqq p \leqq 2$$

であることが必要条件であり、 $\{-2 \le p \le 0\} \cap \{g(0) = q < 2\}$

 $\sharp \, \hbar \, \mathsf{tt}, \ \{0 \le p \le 2\} \cap \{q < -p + 2\}$

が成り立つ。したがって点 (p,q) の存在範囲を図示すると、図の斜線部分で白丸は除き、黒丸は含む。境界は太線部分を含む。

求める面積をSとするとき

$$S = \int_{-2}^{2} \left\{ 2 + \frac{1}{4} (p+1)^{2} \right\} dp - \frac{1}{2} \cdot 2 \cdot 2$$

$$= \left[2p + \frac{(p+1)^{3}}{12} \right]_{-2}^{2} - 2$$

$$= \frac{25}{3}$$
 (答)

